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FORCE-COEFFICIENT AND MOMENT-COEFFICIENT CORRELATIONS AN3 

AIR-HELIUM SIMlTLATION FOR SPHERICALLY BLUNTED CONES* 

By Julius E.  H a r r i s  
Langley Research Center 

SUMMARY 

A n  experimental force  and moment inves t iga t ion  has been conducted i n  a i r ,  
nitrogen, and helium on a family of 10' semiapex angle cones with various blunt- 
ness r a t i o s .  The t e s t s  were made i n  three  hypersonic f a c i l i t i e s  a t  the  NASA 
Langley Research Center. The inves t iga t ion  covered a range of Mach numbers from 
9.75 t o  19.15 and Reynolds numbers from 0.75 X lo5 t o  6.12 x lo5 f o r  angles of 
a t t ack  from 0' t o  45'. 

Analysis of t he  da ta  from the  present inves t iga t ion  together  w i t h  da ta  from 
previous inves t iga t ions  f o r  o ther  cone angles ind ica tes  tha t  a co r re l a t ion  of 
normal-force and pitching-moment coe f f i c i en t s  could be made as a funct ion of 
body geometry and angle of a t t ack  f o r  s lender  cones having s m a l l  t o  moderate 
bluntness r a t i o s .  

The da ta  obtained i n  a i r  and nitrogen were near ly  dupl icated i n  helium f o r  
t h e  t e s t  conditions of Mach number, Reynolds number, and body geometry s tudied .  

Newtonian impact theory w a s  found t o  pred ic t  t h e  t rends of the  aerodynamic 
cha rac t e r i s t i c s ,  and i n  many instances qui te  accurately predicted the  a c t u a l  
magnitudes of the  force  and moment coe f f i c i en t s .  

INTRODUCTION 

It i s  highly des i rab le  t o  be able t o  pred ic t  w i t h  reasonable accuracy the  
force  and moment coe f f i c i en t s  f o r  any member of a c l a s s  of geometrically similar 
bodies once these  c h a r a c t e r i s t i c s  a r e  known f o r  any one member of t h e  c l a s s .  A 
method f o r  co r re l a t ing  normal-force and pitching-moment coe f f i c i en t s  f o r  spheri-  
c a l l y  blunted cones as a funct ion of body geometry and angle of a t t a c k  is  pre- 
sented i n  references 1 and 2. However, t h e  major por t ion  of t he  experimental 

- __ - . - - - _  _ -  - 

The information presented here in  i s  based i n  p a r t  upon a thesis e n t i t l e d  
"A Basic Study of Spherical ly  Blunted Cones Including Force and Moment Coeffi- 
c i en t  Correlat ions and Air-Helium Simulation Studies"  submitted by J u l i u s  E. 
Harris in p a r t i a l  fu l f i l lmen t  of the  requirements f o r  t h e  degree of Master of 
Science i n  Aerospace Engineering, Vi rg in ia  Polytechnic I n s t i t u t e ,  Blacksburg, 
Virginia ,  March 1964. 
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data  presented i n  these  references w a s  obtained during viscous in t e rac t ion  
s tudies  on s l i g h t l y  blunted s lender  cones over a l imi ted  angle-of-attack range. 
Consequently, these da ta  have not c l e a r l y  es tab l i shed  the  e f f ec t s  of increasing 
cone angle, bluntness r a t i o ,  and angle of a t t ack  on t h e  cor re la t ion .  

There is a continuing i n t e r e s t  i n  t h e  use of helium f a c i l i t i e s  t o  study t h e .  
aerodynamic cha rac t e r i s t i c s  of hypersonic configurations.  It i s  important t o  
know f o r  a l l  aerodynamic s tudies  i n  helium whether adequate air-helium s i m u l a -  
t i o n  can be achieved, or' whether helium da ta  can be su i t ab ly  transformed t o  
equivalent a i r  data .  For a wide range of t e s t  conditions i n  both a i r  and helium 
an i d e a l  gas can be assumed. 
and helium is  t h e  r a t i o  of spec i f i c  hea ts .  
by the  use of helium as a tes t  medium has received considerable a t t en t ion  i n  
t h e o r e t i c a l  work. 
spec i f i c  configurations have been t e s t e d  i n  a i r  and helium and the  experimental 
data  compared. However, i n  general ,  these  comparisons have dea l t  with l i f t i n g  
bodies and pointed cones. 

Consequently, t h e  primary difference between a i r  
The simulation of aerodynamic da ta  

(See refs. 3 t o  5 . )  There have a l s o  been a f e w  s tud ies  where 

(See refs. 6 t o  11.) 

Newtonian impact theory provides one of t he  simplest ,  yet  most useful ,  
means of  estimating the  aerodynamic cha rac t e r i s t i c s  of complete or p a r t i a l  
conic and spheric bodies at hypersonic speeds, and i n  many instances i s  the  
only p r a c t i c a l  theory ava i lab le .  (See r e f s .  12 t o  14.  ) 

The purpose of t h e  present inves t iga t ion  w a s  th reefo ld :  (1) t o  study and 
improve, wkiere possible ,  ex i s t ing  force-coeff ic ient  and moment-coefficient cor- 
r e l a t ions ,  (2 )  t o  compare da ta  obtained i n  helium, air ,  and nitrogen and f r o m  
t h i s  comparison t o  determine the  v a l i d i t y  of using da ta  obtained i n  helium 
f a c i l i t i e s  f o r  spher ica l ly  blunted cones, and ( 3 )  t o  study the  aerodynamic 
cha rac t e r i s t i c s  of  spher ica l ly  blunted cones and t o  determine the  adequacy of 
Newtonian impact theory f o r  predict ing these cha rac t e r i s t i c s .  

SYMBOLS 

A area, sq  f t  

CA axial-force coef f ic ien t ,  - 
QAb 

FA 

FD CD drag coef f ic ien t ,  - 
GAb 

FL l i f t  coef f ic ien t ,  - 
QAb 

CL 

Cm 
M pitching-moment coef f ic ien t ,  - 

%*bd 
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CN 

M 

M, 

P 

q 

R 

- x 

a 

normal-force coefficient, - FN 
%Ab 

P - Pm 
¶.m 

pressure coefficient, 

cone base diameter, ft 

axial force, lb 

drag force, (FN sin a + FA COS a), lb 

lift force, (FN cos a - FA sin a), lb 
normal force, lb 

length of model, ft 

defined in figure 4, ft 

lift-drag ratio, - CL 
CD 

pitching moment, ft-lb 

free-stream Mach number 

pressure, Ib/sq ft 

dynamic pressure, PV 1 2  , lb/sq ft 
'L. 

Reynolds number, ~ ~,VcQd 
pm 

radius, ft 

temperature, 91 
velocity, ft/sec 

longitudinal body axis 

distance along X-axis (see fig. 4) 

distance to centroid of planform area, ft 

angle of attack, deg 
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Subscripts : 

approx 

b 

C 

m 

DaX 

n 

P 

5 

S 

t 

W 

W 

1 9 2 , 3 9 4  

angle of a t t ack  f o r  m a x i "  l i f t - d r a g  r a t i o ,  deg 

r a t i o  of spec i f i c  heats  

defined i n  f igu re  4, deg 

densi ty ,  s lugs / f t3  

cone semiapex angle, deg 

rn  bluntness r a t i o ,  - r, 
lb-see coe f f i c i en t  of v i scos i ty ,  
f t 2  

approximat e 

base 

cone 

point of tangency between spher ica l  nose and conical body 

"i" 

nose 

planf o m  

planform neg-ecting spher ica l  nose .A 

sphere 

t o t a l  conditions ahead of normal shock 

windward 

f r e e  stream 

defined i n  f igure  4 

TEST FACILITIES 

The present inves t iga t ion  w a s  conducted i n  th ree  hypersonic research f a c i l -  
i t i e s  at t h e  NASA Langley Research Center: t h e  Langley hotshot tunnel,  t he  
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Langley 11-inch hypersonic tunnel,  and the  Langley 22-inch helium tunnel .  
f a c i l i t i e s  a r e  discussed b r i e f l y  i n  the  following paragraphs. 

These 

The Langley hotshot tunnel  i s  an arc-heated, hypervelocity blowdown tunnel .  
Nitrogen w a s  used as the  t e s t  medium f o r  t h e  present inves t iga t ion .  The major 
components include a capaci tor  banlc f o r  s torage  of e l e c t r i c a l  energy, an a rc-  
heated reservoi r ,  a loo conical  nozzle, a 24-inch-diameter cy l ind r i ca l  t e s t  sec- 
t i on ,  a d i f fuse r ,  and a 300-cubic-foot vacuum chamber. A sketch of the  f a c i l i t y  
i s  presented i n  f igu re  1. 

The operation of t he  f a c i l i t y  f o r  t he  present  inves t iga t ion  w a s  as follows: 
F i r s t ,  t he  tunnel  and vacuum chamber were pumped down t o  approximately 10 microns 
of mercury and the  a rc  chamber w a s  pressurized t o  1000 p s i a  at room temperature. 
N e x t ,  t he  capaci tor  s torage system w a s  charged t o  t h e  desired energy l e v e l  and 
then discharged i n t o  the  a rc  chamber. The a r c  heated and pressurized t h e  n i t r o -  
gen t o  approximately 5000° R and 11,000 ps i a .  The high-pressure ni t rogen then 
ruptured a diaphragm separat ing t h e  a rc  chamber from t h e  nozzle and expanded 
through the  conica l  nozzle t o  a Mach number of approximately 19 i n  the  t es t  sec- 
t i o n .  Once the  desired data were obtained, t he  run w a s  terminated by exhausting 
the  nitrogen remaining i n  the  a r c  chamber through a dump valve.  A more thorough 
descr ip t ion  of the  f a c i l i t y  and i t s  operation i s  presented i n  reference 15. 

The Langley 11-inch hypersonic tunnel  i s  an in te rmi t ten t  closed-cycle tunnel  
designed t o  operate with a i r  as the  t e s t  medium f o r  Mach numbers of approximately 
7 and 10. 
Since reference 16 w a s  published, t he  s torage hea ter  has been replaced by an 
e l e c t r i c  hea te r  and the  tunnel  now has invar nozzle blocks which have reduced 
t h e  t e s t - sec t ion  Mach number va r i a t ions  w i t h  time re su l t i ng  from warpage at the  
nozzle t h r o a t .  (See ref.  17. ) 

A thorough descr ip t ion  of t he  f a c i l i t y  i s  presented i n  reference 16. 

The Langley 22-inch helium tunnel  i s  an in te rmi t ten t  closed-cycle tunnel .  
A descr ipt ion of t he  f a c i l i t y  and i t s  operation i s  presented i n  reference 18. 
A tunnel  ca l ib ra t ion  f o r  the  contoured nozzle used i n  the  present inves t iga t ion  
i s  presented i n  reference 8. 

TEST CONDITIONS 

The approximate t e s t  conditions f o r  the  present inves t iga t ion  a re  l i s t ed  i n  
the  following t a b l e :  

Parameter 

R . . . . . . . .  
pt ,  p s i a  . . . . .  
T t ,  OR . . . . . .  
p,, p s i a  . . . . .  
T,, OR . . . . . .  

Langley 11-inch 
hypersonic tunnel  

7/5 
9.75 

1.56 x 105 
662 

1711 
0.018 
85.6 

Langley hotshot  
t u n n e l  

~ 

7/5 
19 * 15 

0.75 x 105 
11,000 

5000 

87 
0.002 

I ( 

I Langley 22-inch 
helium t u n n e l  I 

5/3 

6.12 x 105 
520 
555 

0.003 
4.5 

19 * 15 
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INSTR-ATION 

I n t e r n a l l y  mounted strain-gage balances were used t o  measure t h e  forces  and 
moments i n  t h e  th ree  t e s t  f a c i l i t i e s .  Angles of a t t a c k  were set i n  the  Langley 
11-inch hypersonic tunnel and the  Langley 22-inch helium tunnel  during the  tun- 
n e l  run by using a prism mounted i n  the  model t o  r e f l e c t  t he  l i g h t  from a poin t  
source outs ide t h e  tunnel  onto a ca l ib ra t ed  sca l e .  In  the  22-inch helium tunnel  
t he  l i g h t  w a s  r e f l e c t e d  onto photoe lec t r ic  c e l l s  which were s e t  a t  t h e  desired 
angle-of-attack in t e rva l s .  As t he  r e f l ec t ed  l i g h t  beam swept pas t  each c e l l ,  an 
e l e c t r i c a l  r e l ay  w a s  energized and caused a high-speed d i g i t a l  recorder t o  sam- 
p l e  and record the  strain-gage outputs on magnetic tape .  I n  the  11-inch hy-per- 
sonic tunnel  t h e  angles of a t t ack  were set manually by posi t ioning the  r e f l e c t e d  
l i g h t  beam on a ca l ib ra t ed  sca le .  The strain-gage outputs were recorded on 
s t r ip -cha r t  recorders .  The angle of a t t a c k  w a s  not changed during a tes t  run i n  
the  Langley hotshot tunnel  because of t he  sho r t  durat ion of t e s t  t ime. S t r a in -  
gage outputs were amplified by a 3-kc system and recorded on an osci l lograph.  

Thermocouples and pressure t ransducers  were used t o  measure the  t o t a l  tem- 
perature  and pressure,  respect ively,  i n  t he  s e t t l i n g  chambers of t h e  11-inch 
hypersonic tunnel  and t h e  22-inch helium tunnel .  A pressure transducer w a s  used 
t o  measure t h e  pressure of t he  ni t rogen i n  the  a rc  chamber of the  Langley hot- 
shot tunnel .  This pressure,  together  with the  i n i t i a l  density,  w a s  used t o  ca l -  
cu la te  t he  t o t a l  temperature i n  t h e  a rc  chamber. Pressure transducers were used 
t o  measure the  t o t a l  pressure behind the  normal shock i n  a l l  t h ree  t e s t  f a c i l -  
i t ies .  An ioniza t ion  gage w a s  used t o  measure t h e  base pressure i n  t h e  11-inch 
hypersonic tunnel .  Base pressure w a s  not measured f o r  t h e  t e s t s  conducted i n  
e i t h e r  t h e  22-inch helium tunnel  o r  t he  Langley hotshot tunnel .  

ACCURACY OF DATA 

The m a x i m u m  uncer ta in t ies  i n  the  force  and moment coe f f i c i en t s  as determined 
from s t a t i c  ca l ib ra t ion  of t he  strain-gage balances a re  l i s t e d  i n  the  following 
t a b l e  : 

Parameter 11-inch hypersonic 
tunnel 

10 .015 
;to .015 
io. 011 

22-inch helium Hotshot tunnel I tunnel 

10.014 

fo .004 

to .  005 
ko.002 
it) .001 

The e r r o r  i n  s e t t i n g  the  angle of a t t a c k  w a s  l e s s  than S.1' i n  a l l  t h ree  
t e s t  f a c i l i t i e s .  
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MODELS 

The model used i n  t h e  inves t iga t ion  w a s  a loo semiapex angle cone w i t h  
varying nose bluntness .  The bluntness r a t i o ,  defined as t h e  r a t i o  of nose 
radius  t o  base radius, ranged from zero f o r  t h e  pointed cone t o  0.763 f o r  t h e  
b luntes t  configuration. A.photograph of t h e  models i s  presented i n  f igu re  2. 
The models t e s t e d  i n  t h e  11-inch tunnel  w e r e  constructed of s t a i n l e s s  s teel .  
Those t e s t e d  i n  t h e  hotshot tunnel  and t h e  22-inch helium tunnel  were con- 
s t ruc t ed  of magnesium. A de t a i l ed  drawing of the models is presented i n  
figure 3. 

Geometrical equations i n  terms of bluntness r a t i o ,  cone angle, and base 
radius are presented i n  t h e  appendix. 
t h e  e f f e c t s  of increasing bluntness r a t i o  and cone angle on the  cor re la t ion ,  as 
w e l l  as i n  t h e  appl ica t ion  of t h e  co r re l a t ion  technique. 

These equations are %eful  for studying 

Newtonian Impact Theory 

Newtonian impact theory i s  compared with the experimental force- and moment- 
coef f ic ien t  da t a  obtained i n  t h e  present  inves t iga t ion .  The t a b l e s  and equations 
presented i n  reference 13 w e r e  used t o  ca lcu la te  t h e  force  and moment coef f i -  
c i e n t s .  The bas ic  geometric parameter used i n  reference 13 w a s  h/a, where i n  
t h e  present ana lys i s  
r a t i o  t h i s  parameter 

h = r n  cos $ and a = q,. I n  terms of t h e  bluntness 
becomes 

g = q cos $4 

The equations presented i n  reference 13 f o r  spher ica l ly  blunted cones can be 
wr i t ten  i n  terms of t h e  bluntness r a t i o s  as follows: 

+ - q cos $)cot # - + s i n  $]cN,~ 2 



The moment reference length is 2% and reference area Ab f o r  equations (2), 

( 3 ) ,  and ( 4 ) .  
the  base of t he  cone. 

The moment center  i s  located at  t h e  juncture of t he  X-axis and 

The Newtonian expression f o r  t h e  pressure coef f ic ien t  may be wr i t ten  as 

cp = 2 cos2q ( 5 )  

where q 
Experience has indicated t h a t  t he  pressure d i s t r ibu t ion  on a spheric body at  
hypersonic speeds is  somewhat lower than t h a t  predicted by equation ( 5 ) .  
ever,  t he  pressure d i s t r ibu t ion  does approximately follow the  cosine-square 
l a w  and immediately suggests replacing t h e  Coefficient 2 with the  stagnation- 
pressure coefficiefi t  behind the  normal shock, Cp,". The stagnation-pressure 
coef f ic ien t  behind the  normal shock i s  given by 

i s  t h e  angle between the  uni t  normal t o  the  surface and wind vectors .  

How- 

By using equation (6) t h e  so-called modified Newtonian expression f o r  t he  pres- 
sure coef f ic ien t  i s  obtained 

Equation (7)  i s  suggested i n  reference 19 and is  compared i n  reference 13 with 
the  more exact so lu t ion  of reference 20. Reference 21 suggests t h a t  equa- 
t i o n  (6)  be replaced by 

the  l i m i t  of which, as + m, becomes (7 + 3)/(y + 1). 
In  reference 22 it i s  shown t h a t  equation ( 5 )  predic t s  t h e  pressure d i s t r i -  

bution on s lender  cones but tends t o  overpredict  t he  pressure d i s t r ibu t ion  as 
the  cone semiapex angle increased. For cones with la rge  semiapex angles, equa- 
t i o n  (7) has been found t o  y i e ld  sa t i s f ac to ry  r e s u l t s .  In  t h e  present i nves t i -  
gation two methods were used. 
f o r  t he  e n t i r e  body and the  second assumed t h a t  equations (7) and (8) were va l id .  
These w i l l  be re fer red  t o  as pure Newtonian theory and modified Newtonian theory, 
respect ively.  

The f i r s t  assumed t h a t  equation ( 3 )  w a s  va l id  

8 



Force-Coefficient and Moment-Coefficient Correlat ions 

A method f o r  cor re la t ing  normal-force and pitching-moment coe f f i c i en t s  as 
a funct ion of body geometry and angle of a t t ack  for spher ica l ly  blunted cones 
is  presented i n  reference 1. In  the  following development t h i s  method i s  pre- 
sented, and the  e f f e c t s  of increasing bluntness r a t i o ,  cone angle, and angle of 
a t t ack  on the  cor re la t ion  a re  s tud ied .  The parameters used i n  t h e  cor re la t ions  
a re  developed from body geometry and Newtonian impact theory.  

Normal-Fsrce Coeff ic ient  

Case I, a 2 $.- Newtonian impact theory p red ic t s  t h a t  t h e  pressure coef f i -  
c ien t  a long the  most windward ray of a cone will be constant and proport ional  t o  
the  square of t h e  s i n e  of t he  angle between the  tangent t o  the  ray and the  f ree-  
stream-velocity vector ,  t h a t  is  

cPjw = 2 s in2 (a  + $) (9 1 

Now f o r  s lender  cones, where ( a  + @) i s  s m a l l ,  equation (9) may be wr i t ten  as 

Next , assuming a circumferent ia l  pressure-coeff ic ient  d i s t r i b u t i o n  of the  form 
(see  f i g .  4)  

cp = cp,w cos% 

t he  normal-force coef f ic ien t  may be wr i t ten  as 

In tegra t ion  of equation (12)  y i e lds  

CN a c p , w k )  

The r a t i o  of planform a rea  t o  base area m a y  be wr i t ten  as (see eq. (Al2)) 



where Ab = flrb2. Next, s u b s t i t u t i n g  equations (10) and (14) i n t o  equation (13) 

which f o r  a >> $ reduces t o  

Case 11, a < g . -  The normal-force coe f f i c i en t  can be wr i t ten  as (see 
r e f .  12) 

0: cos2$ s i n  2a 

which f o r  s lender  cones reduces t o  

The parameter a ( 2 + f)(l - Q 2 )  expressed i n  equation (16) reduces t o  equa- 

t i o n  (18) for This parameter w i l l  
be used t o  co r re l a t e  normal-force coe f f i c i en t s  f o r  da t a  obtained i n  the  present 

a << $ which i s  i n  agreement with case 11. 

inves t iga t ion  as w e l l  as 

The p i t  ching-moment 
cone may be wr i t ten  as 

Cm,n 

- 
those presented i n  reference 23 .  

Pitching-Moment Coeff f ic ien t  

coef f ic ien t  about t he  nose of a spher ica l ly  blunted 

This expression can be in tegra ted  by using equations (13) and (14) together  with 
t h e  r e l a t ions  

10 



t o  y i e l d  

The parameter $(y) - zr - t:) w i l l  be used t o  co r re l a t e  t h e  pitching- 
3# 1 - 

moment coe f f i c i en t s  f o r  t h e  d a t a  obtained i n  the  present inves t iga t ion  as well  as 
those presented i n  reference 23. 

The co r re l a t ion  parameters f o r  normal-force and pitching-moment coe f f i c i en t s  
f o r  sphe r i ca l ly  blunted cones have been derived by using Newtonian impact theory 
and s impl i f ied  geometric r e l a t ionsh ips  toge ther  with two main assumptions. These 
assumptions were: (1) t h a t  t h e  cones were slender and (2)  t h a t  t he  contribution 
of t he  spher ica l  nose t o  t h e  forces  and moments w a s  negl ig ib le .  

RESULTS AND DISCUSSION 

Force and Moment D a t a  

Force-coefficient and pitching-moment-coefficient data obtained i n  t h e  
11-inch hypersonic tunnel  are presented i n  f igure  5 .  Pitching-moment coe f f i -  
c i en t  about t h e  base Cm,b and normal-force coe f f i c i en t  CN were found t o  
decrease with increasing bluntness r a t i o  f o r  a given angle of a t t ack .  Axial- 
force  coe f f i c i en t  CA f o r  model IV w a s  nearly independent of angle of a t t a c k  
f o r  a s  35O and decreased f o r  a >  35'. The drag coe f f i c i en t  CD increased 
w i t h  increasing bluntness r a t i o  f o r  
bluntness r a t i o  f o r  

a 5 33' and decreased w i t h  increasing 
a > 33'. 

Maxirnum l i f t  coe f f i c i en t  CL," and maximm l i f t - d r a g  r a t i o  (L /D)mm 
ranged from 0.89 t o  0.31 and 1.49 t o  0.32 for models I and IV, respec t ive ly .  
The angle of a t t ack  f o r  m a x i m u m  l i f t - d r a g  r a t i o  ranged from approximately 10' 
f o r  model I t o  33' for model I V .  

Comparison of Experimental and Theoretical  Results 

Comparisons of t he  experimental da t a  obtained i n  t h e  11-inch hypersonic 
tunnel with Newtonian impact theory are presented i n  f igu res  6 and 7. 
methods f o r  applying impact theory were used: 

Two 

Pure Newtonian theory which assumes t h a t  t h e  pressure-coefficient distri-  
bution i s  given by equation ( 3 )  and modified Newtonian theory which assumes t h a t  
equations (7) and (8) a re  v a l i d .  

The normal-force coe f f i c i en t s  CN w e r e  predicted very w e l l  by pure 
Newtonian theory f o r  models I and I1 ( f i g s .  6(a)  and ( b ) ) ;  however, t h e  agree- 
ment between theory and experimental data for models I11 and I V  w a s  b e s t  f o r  
modified Newtonian theory. This r e s u l t  w a s  t o  be (See f i g s .  6 ( c )  and ( d ) . )  
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expected s ince,  as previously pointed out,  pure Newtonian theory overpredicts  t h e  
pressure d i s t r i b u t i o n  on a spher ica l  surface whereas t h e  agreement i s  improved 
considerably by using modified Newtonian theory.  Both methods underestimated t h e  
axial-force coe f f i c i en t  CA f o r  models I, 11, and I11 whereas the  agreement w a s  
very good f o r  model IT over most of t h e  angle-of-attack range. This t r end  i s  
pr imari ly  due t o  a decrease i n  the  viscous-force contr ibut ion i n  t h e  axial d i rec-  
t i o n  with increasing angle of a t t a c k  and t h e  decrease of viscous e f f e c t s ,  i n  gen- 
eral, with increasing bluntness  r a t i o .  The disagreement between the  pred ic ted  
axial-force coe f f i c i en t s  and experimental values can be a t t r i b u t e d  t o  t h e  viscous 
contr ibut ion t o  axial force .  I n  reference 24 t h e  T ’  method w a s  used t o  estimate 
t h e  viscous cont r ibu t ion  t o  the  axial-force coe f f i c i en t  f o r  a 10’ semiapex angle 
cone. (See a l s o  ref .  25.)  These values were added t o  the inv i sc id  axial-force 
coef f ic ien t  obtained from Newtonian impact theory.  The sum of the inv i sc id  and 
viscous axial-force coe f f i c i en t s  w a s  found t o  be i n  very good agreement with 
experimental data .  The pitching-moment coe f f i c i en t  about t he  base C,,b f o r  
a l l  models w a s  p red ic ted  w e l l  over t he  e n t i r e  angle-of-attack range by pure 
Newtonian theory.  The ac tua l  magnitudes of t h e  coe f f i c i en t s  were predicted 
within the  accuracy of t h e  da ta  f o r  models I and I1 ( f i g s .  6(a)  and 6 ( b ) ) .  The 
agreement between Newtonian theory and experimental l i f t - d r a g  r a t i o  improved &s 
bluntness increased. 
mum l i f t - d r a g  r a t i o  of model I by approximately 50 percent,.  The disagreement 
between experimental (L/D),, and theory decreased as bluntness increased. 
(See f i g .  7 ( b ) . )  
(L/D)” 

(See f i g .  7(a) .  ) Newtonian theory overpredicted t h e  m a x i -  

Newtonian theory underpredicted t h e  angle of a t t ack  f o r  
by approximately 2’ f o r  a l l  four  models. (See f i g .  7 ( c ) . )  

From these  results it i s  apparent t h a t  Newtonian impact theory accura te ly  
p red ic t s  t h e  t rends  of t h e  aerodynamic cha rac t e r i s t i c s  f o r  t he  sharp and spheri-  
c a l l y  blunted cones through t h e  45’ angle-of-attack range. 
t h e  a c t u a l  magnitudes of t h e  force and moment coe f f i c i en t s  were qu i t e  accura te ly  
predicted.  The agreement between theory and experimental axial-force-coeff ic ient  
da t a  w a s  found t o  improve with increasing bluntness r a t i o .  This t rend  i s  a 
result of t h e  decrease i n  t h e  viscous contr ibut ion t o  axial force i n  comparison 
with t h e  pressure force  contr ibut ion.  

I n  many instances 

A i r - H e  l i m n  Comparison 

The da ta  obtained i n  the  22-inch helium tunnel  are compared with t h e  11-inch 
hypersonic tunnel  a i r  da ta  and t h e  hotshot tunnel  ni t rogen da ta  i n  f igures  8 
and 9. Normal-force and pitching-moment coe f f i c i en t s  are found t o  be near ly  
dupl icated i n  a l l  t h ree  f a c i l i t i e s .  Axial-force coe f f i c i en t s  f o r  models I, 11, 
and I11 were somewhat lower i n  helium than  i n  a i r .  This difference decreased 
with increasing angle of a t t ack  and bluntness r a t i o .  The axial-force coef f i -  
c i en t s  f o r  model IV were near ly  dupl icated i n  helium. The m a x i m u m  l i f t - d r a g  
r a t i o  of model I w a s  approximately 15 percent higher i n  helium than i n  a i r .  
(See f i g .  9 . )  
drag i n  helium than i n  a i r .  The l i f t - d r a g  r a t i o  f o r  t h e  spher ica l ly  blunted 
cones w a s  near ly  dupl icated.  The angle of a t t a c k  f o r  maximum l i f t - d r a g  r a t i o  
w a s  approximately t h e  same as i n  a i r  f o r  a l l  four  models. The differences i n  

This difference w a s  caused by the  lower viscous contr ibut ion t o  
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axial-force coe f f i c i en t s  and consequently i n  l i f t - d r a g  r a t i o  can be a t t r i b u t e d  
t o  Reynolds number d i f fe rences  of t he  t e s t s  r a the r  than t o  specif ic-heat  r a t i o s .  
(See r e f .  24 . )  

From an ana lys i s  of these  da ta  it i s  apparent t h a t  helium f a c i l i t i e s  can be 
adequately used t o  obtain aerodynamic data f o r  spher ica l ly  blunted cones within 
the  range of t e s t  var iab les  and model geometry considered. This i s  i n  agreement 
with the  da ta  presented i n  references 6 t o  10. 
the  r e s u l t s  of t he  present  ana lys i s  or those of t he  previously mentioned r e fe r -  
ences t o  include more complicated configurations with extensive in te r fe rence  
flow f i e l d s  and/or la rge  separated flow regions.  There i s  reason t o  suspect 
t h a t  t he  r e s u l t s  obtained i n  helium may be unacceptable f o r  such configurations.  
(See r e f .  5 . )  

However, one should not extend 

Normal-Force-Coefficient Correlat ion 

The normal-force-coefficient da ta  obtained i n  the  present inves t iga t ion  
together  w i t h  data f o r  o ther  cone angles from reference 23 a re  presented as a 

function of t he  co r re l a t ion  parameter a(2 + z)(l - q2) i n  f igure  10. Normal- 

force-coeff ic ient  data were found t o  co r re l a t e  reasonably wel l  f o r  and 
JI 5 0.509; however, the  da ta  f o r  were somewhat higher than the  t r end  
es tab l i shed  by the  lower bluntness r a t i o s .  The degree of cor re la t ion  i s  seen t o  
be r e l a t i v e l y  independent of bluntness r a t i o  f o r  JI 5 0.509, but very dependent 
on cone semiapex angle $8. That i s ,  as $ increases the  region over which the  
data co r re l a t e  decreases.  (See f i g .  l O ( a ) . )  A t h e o r e t i c a l  study of t h e  corre- 
l a t i o n  parameter using Newtonian impact theory i s  presented i n  f igure  11. This 
study c l e a r l y  pred ic t s  the  t rends es tab l i shed  i n  f igure  10 by the  da ta  from the  
present inves t iga t ion  f o r  a constant cone angle w i t h  varying bluntness r a t i o  and 
the  da ta  from reference 23 f o r  a near ly  constant bluntness r a t i o  with varying 
cone angle.  

@ = 10' 
JI = 0.763 

One of t he  main assumptions made i n  the  der ivat ion of t h e  cor re la t ion  param- 
e t e r  w a s  t h a t  t he  contr ibut ion of t he  spher ica l  nose t o  CN w a s  negl ig ib le .  
This assumption i s  s tudied i n  f igu re  12 f o r  a range of bluntness r a t i o s ,  cone 
angles,  and angles of a t t ack .  For $8 = loo and = 0.509, the  percentage of 
CN due t o  the  spher ica l  nose i s  approximately 14 percent f o r  a = 10' and 
10 percent f o r  a = 40'. (See f i g .  1 2 ( a ) . )  Thus f o r  a given bluntness r a t i o  
and cone angle the  percentage of CN due t o  the  spher ica l  nose decreases with 
increasing angle of a t t ack .  For $8 = 40° and JI = 0.509, t h e  percentage of CN 
due t o  the  spher ica l  nose i s  independent of angle of a t t ack  f o r  and has 
a value of approximately 8 percent .  From t h i s  it i s  c l e a r  tha t  the  assumption i s  
even more j u s t i f i e d  f o r  increasing cone angle.  For bluntness r a t i o s  above 0.5 
the  percentage of CN due t o  t h e  sphe r i ca l  nose increases  rapidly,  f o r  example, 
f o r  $8 = loo and II, = 0.763 the  percentage of CN due t o  the  spher ica l  nose i s  
approximately '40 percent f o r  a = loo. (See f i g .  12 (a ) .  ) 

a 5 40° 

I n  order t o  obtain a compact and use fu l  expression f o r  t h e  normal-force- 

coef f ic ien t -cor re la t ion  parameter a + 2)(1 - +*), it w a s  necessary t o  assume 



t h a t  the  quant i ty  ( a  + $)  w a s  s m a l l .  
t h a t  t he  analysis  of t h e  experimental da ta  from t h e  present invest igat ion 
together with those from reference 23 indica te  t h a t  t he  degree of cor re la t ion  
w a s  not r e s t r i c t e d  t o  cases where ( a  + $) w a s  small, but only t o  cases where 
s i n  # = #. 

(See eq. (lo).) It i s  of i n t e r e s t  t o  note 

I n  t h e  preceding discussion it w a s  shown t h a t  t h e  percentage of CN due t o  
the  spher ica l  nose f o r  bluntness r a t i o s  l e s s  than 0.509 is  no more than 10 t o  
15 percent of t he  t o t a l  CN 
Furthermore, it w a s  shown t h a t  t he  cor re la t ion  w a s  r e s t r i c t e d  t o  cases where 
s i n  $ x $. 
f o r  t he  sharp cone, model I, and the  r e su l t i ng  equation may be wr i t ten  as 

for t h e  spher ica l ly  blunted 10’ semiapex angle cone. 

With t h i s  i n  mind, a third-order  polynomial w a s  f i t t e d  t o  t h e  da ta  

CN = 0.0287 + 0.60975 - 0.10615~ + 0.00g563 (21) 

where 

Equation (21) should y i e l d  reasonably accurate estimations of t he  normal-force 
coef f ic ien ts  f o r  conical  bodies where $ 5 0 . 5  and s i n  # = #. 

Pitching-Moment-Coefficient Correlation 

The pitching-moment-coefficient da ta  obtained i n  the  present invest igat ion 
together  with da ta  f o r  other  cone angles from reference 23 a re  presented as a 

function of t h e  cor re la t ion  parameter, 

parameter (g) 
planform area  neglecting the  spher ica l  nose. 

, i n  f igure  13(a). The 
CN($-) approx 

defines t h e  approximate loca t ion  of the  centroid of t he  
approx 

From equation (20) one f inds  t h a t  
(see eq. (Am), 

A considerable amount of s c a t t e r  i n  t h e  experimental da ta  w a s  found t o  e x i s t  when 
the  da ta  were cor re la ted  against  t h e  approximate centroid loca t ion  of t he  plan- 
form area  as proposed i n  reference 1. (See f i g .  13(a).) However, most of t h i s  
s c a t t e r  w a s  removed by using the  exact loca t ion  of the  centroid of the  planform 
area  including t h e  planform area  of t he  spher ica l  nose. 
parameter can be e a s i l y  found by using the  equations given i n  the  appendix. 

eqs. (A7)  and (A8).) The parameter 

of the  body and t h e  centroid of i t s  planform area  normalized by t h e  base radius 
q 

(See f i g .  l 3 ( b ) . )  This 

i s  the  dis tance between the  nose 

(See 

($)exact 

and can be expressed as 
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+ $(l - csc $4) - 1 i=l - -  
R ) e x a c  t r b 4  1 A i  

i=l 

A l l  t he  loo semiapex angle cone d a t a  are found t o  l i e  near ly  on t h e  l i n e  defined 
by 

Cm,, = - g(5) 
exact 

Equation ( 2 3 )  i s  near ly  i d e n t i c a l  i n  form t o  the  co r re l a t ion  curve presented 

i n  reference 1; however, a nonl inear  r e l a t ionsh ip  exis ts  between (5)approx and 

. The degree of co r re l a t ion  i s  found t o  be r e l a t i v e l y  independent of 
($)exact 
increasing bluntness r a t i o  f o r  but very much dependent on increasing 
cone angle.  
d i c t  t h e  a c t u a l  value of Cm,n with t h e  degree of inaccuracy increasing as 9 

us ing increases .  A t h e o r e t i c a l  study of the co r re l a t ion  parameter 

Newtonian impact theory i s  presented i n  f igu re  14. This study c l e a r l y  p red ic t s  
t h e  t rends  es tab l i shed  i n  f igu re  13 by the da ta  from t h e  present  inves t iga t ion  
f o r  a constant cone angle w i t h  varying bluntness r a t i o  and the  dat.a from re fe r -  
ence 23 f o r  a near ly  constant bluntness r a t i o  with varying cone angle.  

9 = 10' 
For cone angles g r e a t e r  than loo, equation (23)  tends t o  underpre- 

(5)exac t 

From t h e  preceding discussion it i s  apparent t h a t  Cm,n can be cor re la ted  
as a funct ion of body geometry and angle of a t t a c k  f o r  s lender  cones having s m a l l  
t o  moderate bluntness  r a t i o s .  The degree of co r re l a t ion  i s  g r e a t l y  improved by 
using equation (23) in s t ead  of t h e  approximate loca t ion  of the cent ro id  of t he  
planform area as proposed i n  reference 1. 

Reynolds Number Ef fec t s  

The Reynolds numbers s tud ied  during t h e  inves t iga t ion  ranged from 0.75 x lo5 
t o  6.12 x 105. 
e f f e c t  of lower Reynolds numbers on t h e  values  of CN and Cm,n obtained from 
equations (21) and ( 2 3 ) ,  respec t ive ly .  
t h a t  f o r  a s l i g h t l y  blunted 9 O  semiapex angle cone, reducing t h e  free-stream 
Reynolds number per  foot  from 1.8 x 105 t o  2.0 x lo4 caused a s u b s t a n t i a l  change 
i n  both CN and Cm. The e f f e c t  of Reynolds number on CN and Cm would 
decrease w i t h  both increasing cone angle and bluntness  r a t i o .  

As such, no conclusions can be made from these  data as t o  t h e  

However, i n  reference 26, it w a s  shown 



CONCLUSIONS 

An experimental inves t iga t ion  i n  air ,  ni t rogen,  and helium of the  aero- 
dynamic cha rac t e r i s t i c s  of a 10' semiapex angle cone with severa l  values of 
bluntness r a t i o  at Mach numbers from 9.75 t o  19.15 and Reynolds numbers from 
0.75 x 105 t o  6.12 x lo5 f o r  angles of a t t a c k  from 0' t o  45' has yielded t h e  
following conclusions: 

1. Normal-force coe f f i c i en t s  and pitching-moment coe f f i c i en t s  i n  air can be 
cor re la ted  i n  terms of a parameter which includes bluntness r a t i o ,  cone angle, 
and angle of a t t ack  f o r  s lender  cones having small t o  moderate bluntness  r a t i o s .  
The cor re la t ion  would be expected t o  y i e ld  poor results f o r  cone semiapex angles 
much l a r g e r  than 10' and f o r  bluntness r a t i o s  greater than 0.5. 

2. Normal-force coef f ic ien ts  and pitching-moment coe f f i c i en t s  obtained i n  
air  and nitrogen were near ly  duplicated i n  helium. The differences i n  ax ia l -  
force  coe f f i c i en t s  and consequently i n  l i f t - d r a g  r a t i o ,  f o r  t h e  present i nves t i -  
gation, can be a t t r i b u t e d  t o  t h e  Reynolds number differences of t h e  tests r a t h e r  
than t o  t h e  differences i n  specif ic-heat  r a t i o s .  Therefore, within t h e  range of 
t es t  var iables  and model geometry considered, helium f a c i l i t i e s  can be s a t i s f a c -  
t o r i l y  used t o  study t h e  aerodynamic cha rac t e r i s t i c s  of blunted cones f o r  t h e  
ideal-gas case. 

3 .  Newtonian impact theory predicted t h e  t rends of t h e  aerodynamic charac- 
t e r i s t i c s  and i n  many instances predicted t h e  ac tua l  magnitudes of t h e  coeff i -  
c ien ts .  Agreement between theory and experimental da ta  w a s  found t o  improve 
with increasing bluntness r a t i o .  

Langley Research Center, 
National Aeronautics and Space' Administration, 

Langley S ta t ion ,  Hampton, V a . ,  July 22, 1964. 
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APPENDIX 

GEOMETRICAL EQUATIONS FOR SHARP AND SPHERICALLY BLUNTED CONES 

The geometrical equations f o r  sharp and spher ica l ly  blunted cones may be 
expressed i n  terms of bluntness r a t i o ,  cone angle, and base radius  as ( s e e  
f i g .  4)  

L = r&(1 - csc 95) + cot  $1 
L 1  = rbJI csc # 

L2 = q) cot  95 

xm = rbJI cos a' cot  # 

rm = ~ , J I  cos # 

The planform a rea  may be found from 

4 
A ' p = 2  1 A i  

i =1 

where i = 1, 2, 3 ,  4 and 

rbz A3 = - cot  (d(1 - $ cos @ ) 2  
2 



The cent ro id  loca t ion  of t h e  planform area may be found from 

A i  
i =1 

where 

z3 = 3 2  cot  #(2 + Jr cos @ )  
3 

l’b 
Z4 = cot $ ( ~ r  sec # + 1) 

The planform a rea  neglect ing the  spher ica l  nose is  

The exact loca t ion  of t h e  planform area  cent ro id  neglect ing t h e  spher ica l  nose 
i s  

The approximate loca t ion  of t h e  planform area cent ro id  may be wr i t ten  f o r  s len-  
der  cones as (see ref. 1) 
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A very useful approximate expression f o r  t h e  planform a rea  f o r  s l i g h t l y  blunted 
cones can be developed as follows: L e t  

where for s m a l l  J8 

Thus one obtains  

Equations ( A l )  t o  ( A U )  are use fu l  i n  the  appl ica t ion  of t h e  co r re l a t ion  
technique t o  a s p e c i f i c  body. 
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Figure 1.- Langley hotshot tunnel. 
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Figure 3 . -  Model drawings and dimensions. 11-inch hypersonic tunnel, d = 1.50 in . ;  
22-inch helium tunnel ,  d = 3.00 in.; hotshot tunnel ,  d = 3.00 i n .  
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(a) Referred to the body-axis system. 

Figure 5.- Effects of bluntness ratio on the longitudinal force characteristics of a 10' semiapex 
angle cone; M, = 9.75; R = 1.56 x 105; 7 = 7/5. 
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Figure 6.- Comparison with theory of the longitudinal force characteristics for a loo semiapex 
angle cone with various bluntness ratios; M, = 9.75; R = 1.56 x 105; 7 = 7 /5 .  
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Figure 6.- Continued. 
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Figure 6.- Continued. 
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Figure 7.- Lift-drag-ratio study f o r  a loo semiapex angle cone with various bluntness ra t ios ;  
& = 9.75; R = 1.56 x 105; 7 = 7/5 .  
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Figure 8.- Comparison of longitudinal force characteristics of a loo semiapex angle cone with 
various bluntness ratios in air, nitrogen, and helium. 
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Figure 9.-  Comparison of l i f t -drag  r a t i o  f o r  a 10' semiapex angle cone with various bluntness r a t io s  i n  air and helium. 
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Figure 11.- Theoretical study of the parameter used in the normal-force-coefficient correlation. 
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Figure 13.- Pitching-moment-coefficient correlation for  cones with various cone angles and bluntness ratios. 
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